Matrix methods for polynomials
نویسندگان
چکیده
منابع مشابه
Fast methods for resumming matrix polynomials and Chebyshev matrix polynomials
Fast and effective algorithms are discussed for resumming matrix polynomials and Chebyshev matrix polynomials. These algorithms lead to a significant speed-up in computer time by reducing the number of matrix multiplications required to roughly twice the square root of the degree of the polynomial. A few numerical tests are presented, showing that evaluation of matrix functions via polynomial e...
متن کاملislanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولHigher numerical ranges of matrix polynomials
Let $P(lambda)$ be an $n$-square complex matrix polynomial, and $1 leq k leq n$ be a positive integer. In this paper, some algebraic and geometrical properties of the $k$-numerical range of $P(lambda)$ are investigated. In particular, the relationship between the $k$-numerical range of $P(lambda)$ and the $k$-numerical range of its companion linearization is stated. Moreover, the $k$-numerical...
متن کاملGeneralized numerical ranges of matrix polynomials
In this paper, we introduce the notions of C-numerical range and C-spectrum of matrix polynomials. Some algebraic and geometrical properties are investigated. We also study the relationship between the C-numerical range of a matrix polynomial and the joint C-numerical range of its coefficients.
متن کاملSymmetric Linearizations for Matrix Polynomials
A standard way of treating the polynomial eigenvalue problem P (λ)x = 0 is to convert it into an equivalent matrix pencil—a process known as linearization. Two vector spaces of pencils L1(P ) and L2(P ), and their intersection DL(P ), have recently been defined and studied by Mackey, Mackey, Mehl, and Mehrmann. The aim of our work is to gain new insight into these spaces and the extent to which...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1981
ISSN: 0024-3795
DOI: 10.1016/0024-3795(81)90225-1